On the O(1/t) convergence rate of Eckstein and Bertsekas’s generalized alternating direction method of multipliers
نویسندگان
چکیده
This note shows the O(1/t) convergence rate of Eckstein and Bertsekas’s generalized alternating direction method of multipliers in the context of convex minimization with linear constraints.
منابع مشابه
An inexact alternating direction method with SQP regularization for the structured variational inequalities
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...
متن کاملModified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملOn non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers
Recently, a worst-case O(1/t) convergence rate was established for the DouglasRachford alternating direction method of multipliers in an ergodic sense. This note proposes a novel approach to derive the same convergence rate while in a non-ergodic sense.
متن کاملFast Stochastic Alternating Direction Method of Multipliers
In this paper, we propose a new stochastic alternating direction method of multipliers (ADMM) algorithm, which incrementally approximates the full gradient in the linearized ADMM formulation. Besides having a low per-iteration complexity as existing stochastic ADMM algorithms, the proposed algorithm improves the convergence rate on convex problems from O ( 1 √ T ) to O ( 1 T ) , where T is the ...
متن کاملScalable Stochastic Alternating Direction Method of Multipliers
Alternating direction method of multipliers (ADMM) has been widely used in many applications due to its promising performance to solve complex regularization problems and large-scale distributed optimization problems. Stochastic ADMM, which visits only one sample or a mini-batch of samples each time, has recently been proved to achieve better performance than batch ADMM. However, most stochasti...
متن کامل